ControlSystemsBase.bodeplot
ControlSystemsBase.gangoffourplot
ControlSystemsBase.marginplot
ControlSystemsBase.nicholsplot
ControlSystemsBase.nyquistplot
ControlSystemsBase.pzmap
ControlSystemsBase.rgaplot
ControlSystemsBase.setPlotScale
ControlSystemsBase.sigmaplot
All plotting requires the user to manually load the Plots.jl library, e.g., by calling using Plots
.
Plotting functions
ControlSystemsBase.bodeplot
— Functionfig = bodeplot(sys, args...)
bodeplot(LTISystem[sys1, sys2...], args...; plotphase=true, balance = true, kwargs...)
Create a Bode plot of the LTISystem
(s). A frequency vector w
can be optionally provided. To change the Magnitude scale see setPlotScale
. The default magnitude scale is "log10" (absolute scale).
- If
hz=true
, the plot x-axis will be displayed in Hertz, the input frequency vector is still treated as rad/s. balance
: Callbalance_statespace
on the system before plotting.adjust_phase_start
: If true, the phase will be adjusted so that it starts at -90*intexcess degrees, whereintexcess
is the integrator excess of the system.
kwargs
is sent as argument to RecipesBase.plot.
ControlSystemsBase.gangoffourplot
— Methodfig = gangoffourplot(P::LTISystem, C::LTISystem; minimal=true, plotphase=false, Ms_lines = [1.0, 1.25, 1.5], Mt_lines = [], sigma = true, kwargs...)
Gang-of-Four plot.
sigma
determines whether a sigmaplot
is used instead of a bodeplot
for MIMO S
and T
. kwargs
are sent as argument to RecipesBase.plot.
ControlSystemsBase.marginplot
— Functionfig = marginplot(sys::LTISystem [,w::AbstractVector]; balance=true, kwargs...)
marginplot(sys::Vector{LTISystem}, w::AbstractVector; balance=true, kwargs...)
Plot all the amplitude and phase margins of the system(s) sys
.
- A frequency vector
w
can be optionally provided. balance
: Callbalance_statespace
on the system before plotting.
kwargs
is sent as argument to RecipesBase.plot.
ControlSystemsBase.nicholsplot
— Functionfig = nicholsplot{T<:LTISystem}(systems::Vector{T}, w::AbstractVector; kwargs...)
Create a Nichols plot of the LTISystem
(s). A frequency vector w
can be optionally provided.
Keyword arguments:
text = true
Gains = [12, 6, 3, 1, 0.5, -0.5, -1, -3, -6, -10, -20, -40, -60]
pInc = 30
sat = 0.4
val = 0.85
fontsize = 10
pInc
determines the increment in degrees between phase lines.
sat
∈ [0,1] determines the saturation of the gain lines
val
∈ [0,1] determines the brightness of the gain lines
Additional keyword arguments are sent to the function plotting the systems and can be used to specify colors, line styles etc. using regular RecipesBase.jl syntax
This function is based on code subject to the two-clause BSD licence Copyright 2011 Will Robertson Copyright 2011 Philipp Allgeuer
ControlSystemsBase.nyquistplot
— Functionfig = nyquistplot(sys; Ms_circles=Float64[], Mt_circles=Float64[], unit_circle=false, hz=false, critical_point=-1, kwargs...)
nyquistplot(LTISystem[sys1, sys2...]; Ms_circles=Float64[], Mt_circles=Float64[], unit_circle=false, hz=false, critical_point=-1, kwargs...)
Create a Nyquist plot of the LTISystem
(s). A frequency vector w
can be optionally provided.
unit_circle
: if the unit circle should be displayed. The Nyquist curve crosses the unit circle at the gain crossover frequency.Ms_circles
: draw circles corresponding to given levels of sensitivity (circles around -1 with radii1/Ms
).Ms_circles
can be supplied as a number or a vector of numbers. A design staying outside such a circle has a phase margin of at least2asin(1/(2Ms))
rad and a gain margin of at leastMs/(Ms-1)
.Mt_circles
: draw circles corresponding to given levels of complementary sensitivity.Mt_circles
can be supplied as a number or a vector of numbers.critical_point
: point on real axis to mark as critical for encirclements- If
hz=true
, the hover information will be displayed in Hertz, the input frequency vector is still treated as rad/s. balance
: Callbalance_statespace
on the system before plotting.
kwargs
is sent as argument to plot.
ControlSystemsBase.pzmap
— Functionfig = pzmap(fig, system, args...; hz = false, kwargs...)
Create a pole-zero map of the LTISystem
(s) in figure fig
, args
and kwargs
will be sent to the scatter
plot command.
To customize the unit-circle drawn for discrete systems, modify the line attributes, e.g., linecolor=:red
.
If hz
is true, all poles and zeros are scaled by 1/2π.
ControlSystemsBase.rgaplot
— Functionrgaplot(sys, args...; hz=false)
rgaplot(LTISystem[sys1, sys2...], args...; hz=false, balance=true)
Plot the relative-gain array entries of the LTISystem
(s). A frequency vector w
can be optionally provided.
- If
hz=true
, the plot x-axis will be displayed in Hertz, the input frequency vector is still treated as rad/s. balance
: Callbalance_statespace
on the system before plotting.
kwargs
is sent as argument to Plots.plot.
ControlSystemsBase.setPlotScale
— MethodsetPlotScale(str)
Set the default scale of magnitude in bodeplot
and sigmaplot
. str
should be either "dB"
or "log10"
. The default scale if none is chosen is "log10"
.
ControlSystemsBase.sigmaplot
— Functionsigmaplot(sys, args...; hz=false balance=true, extrema)
sigmaplot(LTISystem[sys1, sys2...], args...; hz=false, balance=true, extrema)
Plot the singular values of the frequency response of the LTISystem
(s). A frequency vector w
can be optionally provided.
- If
hz=true
, the plot x-axis will be displayed in Hertz, the input frequency vector is still treated as rad/s. balance
: Callbalance_statespace
on the system before plotting.extrema
: Only plot the largest and smallest singular values.
kwargs
is sent as argument to Plots.plot.
Examples
Bode plot
tf1 = tf([1],[1,1])
tf2 = tf([1/5,2],[1,1,1])
sys = [tf1 tf2]
ws = exp10.(range(-2,stop=2,length=200))
bodeplot(sys, ws)
Sigma plot
sys = ss([-1 2; 0 1], [1 0; 1 1], [1 0; 0 1], [0.1 0; 0 -0.2])
sigmaplot(sys)
Margin
tf1 = tf([1],[1,1])
tf2 = tf([1/5,2],[1,1,1])
ws = exp10.(range(-2,stop=2,length=200))
marginplot([tf1, tf2], ws)
Gangoffour plot
tf1 = tf([1.0],[1,1])
gangoffourplot(tf1, [tf(1), tf(5)])
Nyquist plot
sys = ss([-1 2; 0 1], [1 0; 1 1], [1 0; 0 1], [0.1 0; 0 -0.2])
ws = exp10.(range(-2,stop=2,length=200))
nyquistplot(sys, ws, Ms_circles=1.2, Mt_circles=1.2)
Nichols plot
tf1 = tf([1],[1,1])
ws = exp10.(range(-2,stop=2,length=200))
nicholsplot(tf1,ws)
Pole-zero plot
tf2 = tf([1/5,2],[1,1,1])
pzmap(c2d(tf2, 0.1))
Rlocus plot
Lsim response plot
sys = ss([-1 2; 0 1], [1 0; 1 1], [1 0; 0 1], [0.1 0; 0 -0.2])
sysd = c2d(sys, 0.01)
L = lqr(sysd, [1 0; 0 1], [1 0; 0 1])
ts = 0:0.01:5
plot(lsim(sysd, (x,i)->-L*x, ts; x0=[1;2]), plotu=true)
Impulse response plot
tf1 = tf([1],[1,1])
tf2 = tf([1/5,2],[1,1,1])
sys = [tf1 tf2]
sysd = c2d(ss(sys), 0.01)
plot(impulse(sysd, 5), l=:blue)
Step response plot
tf1 = tf([1],[1,1])
tf2 = tf([1/5,2],[1,1,1])
sys = [tf1 tf2]
sysd = c2d(ss(sys), 0.01)
res = step(sysd, 5)
plot(res, l=(:dash, 4))
# plot!(stepinfo(step(sysd[1,1], 5))) # adds extra info to the plot