Functions: StateEstimator Internals

Augmented Model

ModelPredictiveControl.f̂!Function
f̂!(x̂next0, û0, estim::StateEstimator, model::SimModel, x̂0, u0, d0) -> nothing

Mutating state function $\mathbf{f̂}$ of the augmented model.

By introducing an augmented state vector $\mathbf{x̂_0}$ like in augment_model, the function returns the next state of the augmented model, defined as:

\[\begin{aligned} \mathbf{x̂_0}(k+1) &= \mathbf{f̂}\Big(\mathbf{x̂_0}(k), \mathbf{u_0}(k), \mathbf{d_0}(k)\Big) \\ \mathbf{ŷ_0}(k) &= \mathbf{ĥ}\Big(\mathbf{x̂_0}(k), \mathbf{d_0}(k)\Big) \end{aligned}\]

where $\mathbf{x̂_0}(k+1)$ is stored in x̂next0 argument. The method mutates x̂next0 and û0 in place, the latter stores the input vector of the augmented model $\mathbf{u_0 + ŷ_{s_u}}$.

source
f̂!(x̂next0, _ , estim::StateEstimator, model::LinModel, x̂0, u0, d0) -> nothing

Use the augmented model matrices if model is a LinModel.

source
f̂!(x̂next0, _ , estim::InternalModel, model::NonLinModel, x̂0, u0, d0)

State function $\mathbf{f̂}$ of InternalModel for NonLinModel.

It calls model.f!(x̂next0, x̂0, u0 ,d0) since this estimator does not augment the states.

source
ModelPredictiveControl.ĥ!Function
ĥ!(ŷ0, estim::StateEstimator, model::SimModel, x̂0, d0) -> nothing

Mutating output function $\mathbf{ĥ}$ of the augmented model, see f̂!.

source
ĥ!(ŷ0, estim::StateEstimator, model::LinModel, x̂0, d0) -> nothing

Use the augmented model matrices if model is a LinModel.

source
ĥ!(ŷ0, estim::InternalModel, model::NonLinModel, x̂0, d0)

Output function $\mathbf{ĥ}$ of InternalModel, it calls model.h!.

source

Estimator Construction

ModelPredictiveControl.init_estimstochFunction
init_estimstoch(model, i_ym, nint_u, nint_ym) -> As, Cs_u, Cs_y, nxs, nint_u, nint_ym

Init stochastic model matrices from integrator specifications for state estimation.

The arguments nint_u and nint_ym specify how many integrators are added to each manipulated input and measured outputs. The function returns the state-space matrices As, Cs_u and Cs_y of the stochastic model:

\[\begin{aligned} \mathbf{x_{s}}(k+1) &= \mathbf{A_s x_s}(k) + \mathbf{B_s e}(k) \\ \mathbf{y_{s_{u}}}(k) &= \mathbf{C_{s_{u}} x_s}(k) \\ \mathbf{y_{s_{ym}}}(k) &= \mathbf{C_{s_{ym}} x_s}(k) \end{aligned}\]

where $\mathbf{e}(k)$ is an unknown zero mean white noise and $\mathbf{A_s} = \mathrm{diag}(\mathbf{A_{s_{u}}, A_{s_{ym}}})$. The estimations does not use $\mathbf{B_s}$, it is thus ignored. The function init_integrators builds the state-space matrices.

source
ModelPredictiveControl.init_integratorsFunction
init_integrators(nint, ny, varname::String) -> A, C, nint

Calc A, C state-space matrices from integrator specifications nint.

This function is used to initialize the stochastic part of the augmented model for the design of state estimators. The vector nint provides how many integrators (in series) should be incorporated for each output. The argument should have ny element, except for nint=0 which is an alias for no integrator at all. The specific case of one integrator per output results in A = I and C = I. The estimation does not use the B matrix, it is thus ignored. This function is called twice :

  1. for the unmeasured disturbances at manipulated inputs $\mathbf{u}$
  2. for the unmeasured disturbances at measured outputs $\mathbf{y^m}$
source
ModelPredictiveControl.augment_modelFunction
augment_model(
    model::LinModel, As, Cs_u, Cs_y; verify_obsv=true
) -> Â, B̂u, Ĉ, B̂d, D̂d, x̂op, f̂op

Augment LinModel state-space matrices with stochastic ones As, Cs_u, Cs_y.

If $\mathbf{x_0}$ are model.x0 states, and $\mathbf{x_s}$, the states defined at init_estimstoch, we define an augmented state vector $\mathbf{x̂} = [ \begin{smallmatrix} \mathbf{x_0} \\ \mathbf{x_s} \end{smallmatrix} ]$. The method returns the augmented matrices , B̂u, , B̂d and D̂d:

\[\begin{aligned} \mathbf{x̂_0}(k+1) &= \mathbf{Â x̂_0}(k) + \mathbf{B̂_u u_0}(k) + \mathbf{B̂_d d_0}(k) \\ \mathbf{ŷ_0}(k) &= \mathbf{Ĉ x̂_0}(k) + \mathbf{D̂_d d_0}(k) \end{aligned}\]

An error is thrown if the augmented model is not observable and verify_obsv == true. The augmented operating points x̂op and f̂op are simply $\mathbf{x_{op}}$ and $\mathbf{f_{op}}$ vectors appended with zeros (see setop!).

source
augment_model(
    model::SimModel, As, Cs_u, Cs_y; verify_obsv=false
) -> Â, B̂u, Ĉ, B̂d, D̂d, x̂op, f̂op

Return empty matrices, and x̂op & f̂op vectors, if model is not a LinModel.

source
ModelPredictiveControl.init_ukfFunction
init_ukf(model, nx̂, α, β, κ) -> nσ, γ, m̂, Ŝ

Compute the UnscentedKalmanFilter constants from $α, β$ and $κ$.

With $n_\mathbf{x̂}$ elements in the state vector $\mathbf{x̂}$ and $n_σ = 2 n_\mathbf{x̂} + 1$ sigma points, the scaling factor applied on standard deviation matrices $\sqrt{\mathbf{P̂}}$ is:

\[ γ = α \sqrt{ n_\mathbf{x̂} + κ }\]

The weight vector $(n_σ × 1)$ for the mean and the weight matrix $(n_σ × n_σ)$ for the covariance are respectively:

\[\begin{aligned} \mathbf{m̂} &= \begin{bmatrix} 1 - \tfrac{n_\mathbf{x̂}}{γ^2} & \tfrac{1}{2γ^2} & \tfrac{1}{2γ^2} & \cdots & \tfrac{1}{2γ^2} \end{bmatrix}' \\ \mathbf{Ŝ} &= \mathrm{diag}\big( 2 - α^2 + β - \tfrac{n_\mathbf{x̂}}{γ^2} \:,\; \tfrac{1}{2γ^2} \:,\; \tfrac{1}{2γ^2} \:,\; \cdots \:,\; \tfrac{1}{2γ^2} \big) \end{aligned}\]

See update_estimate!(::UnscentedKalmanFilter) for other details.

source
ModelPredictiveControl.init_internalmodelFunction
init_internalmodel(As, Bs, Cs, Ds) -> Âs, B̂s

Calc stochastic model update matrices Âs and B̂s for InternalModel estimator.

As, Bs, Cs and Ds are the stochastic model matrices :

\[\begin{aligned} \mathbf{x_s}(k+1) &= \mathbf{A_s x_s}(k) + \mathbf{B_s e}(k) \\ \mathbf{y_s}(k) &= \mathbf{C_s x_s}(k) + \mathbf{D_s e}(k) \end{aligned}\]

where $\mathbf{e}(k)$ is conceptual and unknown zero mean white noise. Its optimal estimation is $\mathbf{ê=0}$, the expected value. Thus, the Âs and B̂s matrices that optimally update the stochastic estimate $\mathbf{x̂_s}$ are:

\[\begin{aligned} \mathbf{x̂_s}(k+1) &= \mathbf{(A_s - B_s D_s^{-1} C_s) x̂_s}(k) + \mathbf{(B_s D_s^{-1}) ŷ_s}(k) \\ &= \mathbf{Â_s x̂_s}(k) + \mathbf{B̂_s ŷ_s}(k) \end{aligned}\]

with current stochastic outputs estimation $\mathbf{ŷ_s}(k)$, composed of the measured $\mathbf{ŷ_s^m}(k) = \mathbf{y^m}(k) - \mathbf{ŷ_d^m}(k)$ and unmeasured $\mathbf{ŷ_s^u = 0}$ outputs. See [1].

source
ModelPredictiveControl.init_predmat_mheFunction
init_predmat_mhe(
    model::LinModel, He, i_ym, Â, B̂u, Ĉm, B̂d, D̂dm, x̂op, f̂op, p
) -> E, G, J, B, ex̄, Ex̂, Gx̂, Jx̂, Bx̂

Construct the MovingHorizonEstimator prediction matrices for LinModel model.

We first introduce the deviation vector of the estimated state at arrival $\mathbf{x̂_0}(k-N_k+p) = \mathbf{x̂}_k(k-N_k+p) - \mathbf{x̂_{op}}$ (see setop!), and the vector $\mathbf{Z} = [\begin{smallmatrix} \mathbf{x̂_0}(k-N_k+p) \\ \mathbf{Ŵ} \end{smallmatrix}]$ with the decision variables. Setting the constant $p=0$ produces an estimator in the current form, while the prediction form is obtained with $p=1$. The estimated sensor noises from time $k-N_k+1$ to $k$ are computed by:

\[\begin{aligned} \mathbf{V̂} = \mathbf{Y_0^m - Ŷ_0^m} &= \mathbf{E Z + G U_0 + J D_0 + Y_0^m + B} \\ &= \mathbf{E Z + F} \end{aligned}\]

in which $\mathbf{U_0}$ and $\mathbf{Y_0^m}$ respectively include the deviation values of the manipulated inputs $\mathbf{u_0}(k-j+p)$ from $j=N_k$ to $1$ and measured outputs $\mathbf{y_0^m}(k-j+1)$ from $j=N_k$ to $1$. The vector $\mathbf{D_0}$ comprises one additional measured disturbance if $p=0$, that is, it includes the deviation vectors $\mathbf{d_0}(k-j+1)$ from $j=N_k+1-p$ to $1$. The constant $\mathbf{B}$ is the contribution for non-zero state $\mathbf{x̂_{op}}$ and state update $\mathbf{f̂_{op}}$ operating points (for linearization, see augment_model and linearize). The method also returns the matrices for the estimation error at arrival:

\[ \mathbf{x̄} = \mathbf{x̂_0^†}(k-N_k+p) - \mathbf{x̂_0}(k-N_k+p) = \mathbf{e_x̄ Z + f_x̄}\]

in which $\mathbf{e_x̄} = [\begin{smallmatrix} -\mathbf{I} & \mathbf{0} & \cdots & \mathbf{0} \end{smallmatrix}]$, and $\mathbf{f_x̄} = \mathbf{x̂_0^†}(k-N_k+p)$. The latter is the deviation vector of the state at arrival, estimated at time $k-N_k$, i.e. $\mathbf{x̂_0^†}(k-N_k+p) = \mathbf{x̂}_{k-N_k}(k-N_k+p) - \mathbf{x̂_{op}}$. Lastly, the estimates $\mathbf{x̂_0}(k-j+p)$ from $j=N_k-1$ to $0$, also in deviation form, are computed with:

\[\begin{aligned} \mathbf{X̂_0} &= \mathbf{E_x̂ Z + G_x̂ U_0 + J_x̂ D_0 + B_x̂} \\ &= \mathbf{E_x̂ Z + F_x̂} \end{aligned}\]

The matrices $\mathbf{E, G, J, B, E_x̂, G_x̂, J_x̂, B_x̂}$ are defined in the Extended Help section. The vectors $\mathbf{F, F_x̂, f_x̄}$ are recalculated at each discrete time step, see initpred!(::MovingHorizonEstimator, ::LinModel) and linconstraint!(::MovingHorizonEstimator, ::LinModel).

Extended Help

Extended Help

Using the augmented process model matrices $\mathbf{Â, B̂_u, Ĉ^m, B̂_d, D̂_d^m}$, and the function $\mathbf{S}(j) = ∑_{i=0}^j \mathbf{Â}^i$, the prediction matrices for the sensor noises depend on the constant $p$. For $p=0$, the matrices are computed by:

\[\begin{aligned} \mathbf{E} &= - \begin{bmatrix} \mathbf{Ĉ^m}\mathbf{Â}^{1} & \mathbf{Ĉ^m}\mathbf{Â}^{0} & \cdots & \mathbf{0} \\ \mathbf{Ĉ^m}\mathbf{Â}^{2} & \mathbf{Ĉ^m}\mathbf{Â}^{1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Ĉ^m}\mathbf{Â}^{H_e} & \mathbf{Ĉ^m}\mathbf{Â}^{H_e-1} & \cdots & \mathbf{Ĉ^m}\mathbf{Â}^{0} \end{bmatrix} \\ \mathbf{G} &= - \begin{bmatrix} \mathbf{Ĉ^m}\mathbf{Â}^{0}\mathbf{B̂_u} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{Ĉ^m}\mathbf{Â}^{1}\mathbf{B̂_u} & \mathbf{Ĉ^m}\mathbf{Â}^{0}\mathbf{B̂_u} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Ĉ^m}\mathbf{Â}^{H_e-1}\mathbf{B̂_u} & \mathbf{Ĉ^m}\mathbf{Â}^{H_e-2}\mathbf{B̂_u} & \cdots & \mathbf{Ĉ^m}\mathbf{Â}^{0}\mathbf{B̂_u} \end{bmatrix} \\ \mathbf{J} &= - \begin{bmatrix} \mathbf{Ĉ^m}\mathbf{Â}^{0}\mathbf{B̂_d} & \mathbf{D̂_d^m} & \cdots & \mathbf{0} \\ \mathbf{Ĉ^m}\mathbf{Â}^{1}\mathbf{B̂_d} & \mathbf{Ĉ^m}\mathbf{Â}^{0}\mathbf{B̂_d} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Ĉ^m}\mathbf{Â}^{H_e-1}\mathbf{B̂_d} & \mathbf{Ĉ^m}\mathbf{Â}^{H_e-2}\mathbf{B̂_d} & \cdots & \mathbf{D̂_d^m} \end{bmatrix} \\ \mathbf{B} &= - \begin{bmatrix} \mathbf{Ĉ^m S}(0) \\ \mathbf{Ĉ^m S}(1) \\ \vdots \\ \mathbf{Ĉ^m S}(H_e-1) \end{bmatrix} \mathbf{\big(f̂_{op} - x̂_{op}\big)} \end{aligned}\]

or, for $p=1$, the matrices are given by:

\[\begin{aligned} \mathbf{E} &= - \begin{bmatrix} \mathbf{Ĉ^m}\mathbf{Â}^{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{Ĉ^m}\mathbf{Â}^{1} & \mathbf{Ĉ^m}\mathbf{Â}^{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Ĉ^m}\mathbf{Â}^{H_e-1} & \mathbf{Ĉ^m}\mathbf{Â}^{H_e-2} & \cdots & \mathbf{0} \end{bmatrix} \\ \mathbf{G} &= - \begin{bmatrix} \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{Ĉ^m}\mathbf{Â}^{0}\mathbf{B̂_u} & \mathbf{0} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Ĉ^m}\mathbf{Â}^{H_e-2}\mathbf{B̂_u} & \mathbf{Ĉ^m}\mathbf{Â}^{H_e-3}\mathbf{B̂_u} & \cdots & \mathbf{0} \end{bmatrix} \\ \mathbf{J} &= - \begin{bmatrix} \mathbf{D̂_d^m} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{Ĉ^m}\mathbf{Â}^{0}\mathbf{B̂_d} & \mathbf{D̂_d^m} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Ĉ^m}\mathbf{Â}^{H_e-2}\mathbf{B̂_d} & \mathbf{Ĉ^m}\mathbf{Â}^{H_e-3}\mathbf{B̂_d} & \cdots & \mathbf{D̂_d^m} \end{bmatrix} \\ \mathbf{B} &= - \begin{bmatrix} \mathbf{0} \\ \mathbf{Ĉ^m S}(0) \\ \vdots \\ \mathbf{Ĉ^m S}(H_e-2) \end{bmatrix} \mathbf{\big(f̂_{op} - x̂_{op}\big)} \end{aligned}\]

The matrices for the estimated states are computed by:

\[\begin{aligned} \mathbf{E_x̂} &= \begin{bmatrix} \mathbf{Â}^{1} & \mathbf{A}^{0} & \cdots & \mathbf{0} \\ \mathbf{Â}^{2} & \mathbf{Â}^{1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Â}^{H_e} & \mathbf{Â}^{H_e-1} & \cdots & \mathbf{Â}^{0} \end{bmatrix} \\ \mathbf{G_x̂} &= \begin{bmatrix} \mathbf{Â}^{0}\mathbf{B̂_u} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{Â}^{1}\mathbf{B̂_u} & \mathbf{Â}^{0}\mathbf{B̂_u} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Â}^{H_e-1}\mathbf{B̂_u} & \mathbf{Â}^{H_e-2}\mathbf{B̂_u} & \cdots & \mathbf{Â}^{0}\mathbf{B̂_u} \end{bmatrix} \\ \mathbf{J_x̂^†} &= \begin{bmatrix} \mathbf{Â}^{0}\mathbf{B̂_d} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{Â}^{1}\mathbf{B̂_d} & \mathbf{Â}^{0}\mathbf{B̂_d} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Â}^{H_e-1}\mathbf{B̂_d} & \mathbf{Â}^{H_e-2}\mathbf{B̂_d} & \cdots & \mathbf{Â}^{0}\mathbf{B̂_d} \end{bmatrix} \ , \quad \mathbf{J_x̂} = \begin{cases} [\begin{smallmatrix} \mathbf{J_x̂^†} & \mathbf{0} \end{smallmatrix}] & p=0 \\ \mathbf{J_x̂^†} & p=1 \end{cases} \\ \mathbf{B_x̂} &= \begin{bmatrix} \mathbf{S}(0) \\ \mathbf{S}(1) \\ \vdots \\ \mathbf{S}(H_e-1) \end{bmatrix} \mathbf{\big(f̂_{op} - x̂_{op}\big)} \end{aligned}\]

All these matrices are truncated when $N_k < H_e$ (at the beginning).

source

Return empty matrices if model is not a LinModel, except for ex̄.

source
ModelPredictiveControl.relaxarrivalFunction
relaxarrival(
    model::SimModel, nϵ, c_x̂min, c_x̂max, x̂min, x̂max, ex̄
) -> A_x̃min, A_x̃max, x̃min, x̃max, ẽx̄

Augment arrival state constraints with slack variable ϵ for softening the MHE.

Denoting the MHE decision variable augmented with the slack variable $\mathbf{Z̃} = [\begin{smallmatrix} ϵ \\ \mathbf{Z} \end{smallmatrix}]$, it returns the $\mathbf{ẽ_x̄}$ matrix that appears in the estimation error at arrival equation $\mathbf{x̄} = \mathbf{ẽ_x̄ Z̃ + f_x̄}$. It also returns the augmented constraints $\mathbf{x̃_{min}}$ and $\mathbf{x̃_{max}}$, and the $\mathbf{A}$ matrices for the inequality constraints:

\[\begin{bmatrix} \mathbf{A_{x̃_{min}}} \\ \mathbf{A_{x̃_{max}}} \end{bmatrix} \mathbf{Z̃} ≤ \begin{bmatrix} - \mathbf{(x̃_{min} - x̃_{op})} \\ + \mathbf{(x̃_{max} - x̃_{op})} \end{bmatrix}\]

in which $\mathbf{x̃_{min}} = [\begin{smallmatrix} 0 \\ \mathbf{x̂_{min}} \end{smallmatrix}]$, $\mathbf{x̃_{max}} = [\begin{smallmatrix} ∞ \\ \mathbf{x̂_{max}} \end{smallmatrix}]$ and $\mathbf{x̃_{op}} = [\begin{smallmatrix} 0 \\ \mathbf{x̂_{op}} \end{smallmatrix}]$

source
ModelPredictiveControl.relaxX̂Function
relaxX̂(model::SimModel, nϵ, C_x̂min, C_x̂max, Ex̂) -> A_X̂min, A_X̂max, Ẽx̂

Augment estimated state constraints with slack variable ϵ for softening the MHE.

Denoting the MHE decision variable augmented with the slack variable $\mathbf{Z̃} = [\begin{smallmatrix} ϵ \\ \mathbf{Z} \end{smallmatrix}]$, it returns the $\mathbf{Ẽ_x̂}$ matrix that appears in estimated states equation $\mathbf{X̂} = \mathbf{Ẽ_x̂ Z̃ + F_x̂}$. It also returns the $\mathbf{A}$ matrices for the inequality constraints:

\[\begin{bmatrix} \mathbf{A_{X̂_{min}}} \\ \mathbf{A_{X̂_{max}}} \end{bmatrix} \mathbf{Z̃} ≤ \begin{bmatrix} - \mathbf{(X̂_{min} - X̂_{op}) + F_x̂} \\ + \mathbf{(X̂_{max} - X̂_{op}) - F_x̂} \end{bmatrix}\]

in which $\mathbf{X̂_{min}, X̂_{max}}$ and $\mathbf{X̂_{op}}$ vectors respectively contains $\mathbf{x̂_{min}, x̂_{max}}$ and $\mathbf{x̂_{op}}$ repeated $H_e$ times.

source

Return empty matrices if model is not a LinModel

source
ModelPredictiveControl.relaxŴFunction
relaxŴ(model::SimModel, nϵ, C_ŵmin, C_ŵmax, nx̂) -> A_Ŵmin, A_Ŵmax

Augment estimated process noise constraints with slack variable ϵ for softening the MHE.

Denoting the MHE decision variable augmented with the slack variable $\mathbf{Z̃} = [\begin{smallmatrix} ϵ \\ \mathbf{Z} \end{smallmatrix}]$, it returns the $\mathbf{A}$ matrices for the inequality constraints:

\[\begin{bmatrix} \mathbf{A_{Ŵ_{min}}} \\ \mathbf{A_{Ŵ_{max}}} \end{bmatrix} \mathbf{Z̃} ≤ \begin{bmatrix} - \mathbf{Ŵ_{min}} \\ + \mathbf{Ŵ_{max}} \end{bmatrix}\]

source
ModelPredictiveControl.relaxV̂Function
relaxV̂(model::SimModel, nϵ, C_v̂min, C_v̂max, E) -> A_V̂min, A_V̂max, Ẽ

Augment estimated sensor noise constraints with slack variable ϵ for softening the MHE.

Denoting the MHE decision variable augmented with the slack variable $\mathbf{Z̃} = [\begin{smallmatrix} ϵ \\ \mathbf{Z} \end{smallmatrix}]$, it returns the $\mathbf{Ẽ}$ matrix that appears in estimated sensor noise equation $\mathbf{V̂} = \mathbf{Ẽ Z̃ + F}$. It also returns the $\mathbf{A}$ matrices for the inequality constraints:

\[\begin{bmatrix} \mathbf{A_{V̂_{min}}} \\ \mathbf{A_{V̂_{max}}} \end{bmatrix} \mathbf{Z̃} ≤ \begin{bmatrix} - \mathbf{V̂_{min} + F} \\ + \mathbf{V̂_{max} - F} \end{bmatrix}\]

source

Return empty matrices if model is not a LinModel

source
ModelPredictiveControl.init_matconstraint_mheFunction
init_matconstraint_mhe(model::LinModel, 
    i_x̃min, i_x̃max, i_X̂min, i_X̂max, i_Ŵmin, i_Ŵmax, i_V̂min, i_V̂max, args...
) -> i_b, i_g, A

Init i_b, i_g and A matrices for the MHE linear inequality constraints.

The linear and nonlinear inequality constraints are respectively defined as:

\[\begin{aligned} \mathbf{A Z̃ } &≤ \mathbf{b} \\ \mathbf{g(Z̃)} &≤ \mathbf{0} \end{aligned}\]

i_b is a BitVector including the indices of $\mathbf{b}$ that are finite numbers. i_g is a similar vector but for the indices of $\mathbf{g}$ (empty if model is a LinModel). The method also returns the $\mathbf{A}$ matrix if args is provided. In such a case, args needs to contain all the inequality constraint matrices: A_x̃min, A_x̃max, A_X̂min, A_X̂max, A_Ŵmin, A_Ŵmax, A_V̂min, A_V̂max.

source

Init i_b, A without state and sensor noise constraints if model is not a LinModel.

source

Update Quadratic Optimization

ModelPredictiveControl.initpred!Method
initpred!(estim::MovingHorizonEstimator, model::LinModel) -> nothing

Init quadratic optimization matrices F, fx̄, H̃, q̃, p for MovingHorizonEstimator.

See init_predmat_mhe for the definition of the vectors $\mathbf{F, f_x̄}$. It also inits estim.optim objective function, expressed as the quadratic general form:

\[ J = \min_{\mathbf{Z̃}} \frac{1}{2}\mathbf{Z̃' H̃ Z̃} + \mathbf{q̃' Z̃} + p \]

in which $\mathbf{Z̃} = [\begin{smallmatrix} ϵ \\ \mathbf{Z} \end{smallmatrix}]$. Note that $p$ is useless at optimization but required to evaluate the objective minima $J$. The Hessian $\mathbf{H̃}$ matrix of the quadratic general form is not constant here because of the time-varying $\mathbf{P̄}$ covariance . The computed variables are:

\[\begin{aligned} \mathbf{F} &= \mathbf{G U_0} + \mathbf{J D_0} + \mathbf{Y_0^m} + \mathbf{B} \\ \mathbf{f_x̄} &= \mathbf{x̂_0^†}(k-N_k+1) \\ \mathbf{F_Z̃} &= [\begin{smallmatrix}\mathbf{f_x̄} \\ \mathbf{F} \end{smallmatrix}] \\ \mathbf{Ẽ_Z̃} &= [\begin{smallmatrix}\mathbf{ẽ_x̄} \\ \mathbf{Ẽ} \end{smallmatrix}] \\ \mathbf{M}_{N_k} &= \mathrm{diag}(\mathbf{P̄}^{-1}, \mathbf{R̂}_{N_k}^{-1}) \\ \mathbf{Ñ}_{N_k} &= \mathrm{diag}(C, \mathbf{0}, \mathbf{Q̂}_{N_k}^{-1}) \\ \mathbf{H̃} &= 2(\mathbf{Ẽ_Z̃}' \mathbf{M}_{N_k} \mathbf{Ẽ_Z̃} + \mathbf{Ñ}_{N_k}) \\ \mathbf{q̃} &= 2(\mathbf{M}_{N_k} \mathbf{Ẽ_Z̃})' \mathbf{F_Z̃} \\ p &= \mathbf{F_Z̃}' \mathbf{M}_{N_k} \mathbf{F_Z̃} \end{aligned}\]

source
ModelPredictiveControl.linconstraint!Method
linconstraint!(estim::MovingHorizonEstimator, model::LinModel)

Set b vector for the linear model inequality constraints ($\mathbf{A Z̃ ≤ b}$) of MHE.

Also init $\mathbf{F_x̂ = G_x̂ U_0 + J_x̂ D_0 + B_x̂}$ vector for the state constraints, see init_predmat_mhe.

source

Solve Optimization Problem

ModelPredictiveControl.optim_objective!Method
optim_objective!(estim::MovingHorizonEstimator) -> Z̃

Optimize objective of estim MovingHorizonEstimator and return the solution .

If supported by estim.optim, it warm-starts the solver at:

\[\mathbf{Z̃} = \begin{bmatrix} ϵ_{k-1} \\ \mathbf{x̂}_{k-1}(k-N_k+p) \\ \mathbf{ŵ}_{k-1}(k-N_k+p+0) \\ \mathbf{ŵ}_{k-1}(k-N_k+p+1) \\ \vdots \\ \mathbf{ŵ}_{k-1}(k-p-2) \\ \mathbf{0} \\ \end{bmatrix}\]

where $\mathbf{ŵ}_{k-1}(k-j)$ is the input increment for time $k-j$ computed at the last time step $k-1$. It then calls JuMP.optimize!(estim.optim) and extract the solution. A failed optimization prints an @error log in the REPL and returns the warm-start value.

source

Evaluate Estimated Output

ModelPredictiveControl.evalŷFunction
evalŷ(estim::InternalModel, d) -> ŷ

Get InternalModel estimated output .

InternalModel estimator needs current stochastic output $\mathbf{ŷ_s}(k)$ to estimate its outputs $\mathbf{ŷ}(k)$. The method preparestate! store this value inside estim object, it should be thus called before evalŷ.

source
evalŷ(estim::StateEstimator, d) -> ŷ

Evaluate StateEstimator output from measured disturbance d and estim.x̂0.

source

Remove Operating Points

ModelPredictiveControl.remove_op!Function
remove_op!(estim::StateEstimator, ym, d, u=nothing) -> y0m, d0, u0

Remove operating pts on measured outputs ym, disturbances d and inputs u (if provided).

If u is provided, also store current inputs without operating points u0 in estim.lastu0. This field is used for PredictiveController computations.

source

Init Estimate

ModelPredictiveControl.init_estimate!Function
init_estimate!(estim::StateEstimator, model::LinModel, y0m, d0, u0)

Init estim.x̂0 estimate with the steady-state solution if model is a LinModel.

Using u0, y0m and d0 arguments (deviation values, see setop!), the steadystate problem combined to the equality constraint $\mathbf{ŷ_0^m} = \mathbf{y_0^m}$ engenders the following system to solve:

\[\begin{bmatrix} \mathbf{I} - \mathbf{Â} \\ \mathbf{Ĉ^m} \end{bmatrix} \mathbf{x̂_0} = \begin{bmatrix} \mathbf{B̂_u u_0 + B̂_d d_0 + f̂_{op} - x̂_{op}} \\ \mathbf{y_0^m - D̂_d^m d_0} \end{bmatrix}\]

in which $\mathbf{Ĉ^m, D̂_d^m}$ are the rows of estim.Ĉ, estim.D̂d that correspond to measured outputs $\mathbf{y^m}$.

source
init_estimate!(estim::StateEstimator, model::SimModel, _ , _ , _ )

Left estim.x̂0 estimate unchanged if model is not a LinModel.

source
init_estimate!(estim::InternalModel, model::LinModel, y0m, d0, u0)

Init estim.x̂0/x̂d/x̂s estimate at steady-state for InternalModel.

The deterministic estimates estim.x̂d start at steady-state using u0 and d0 arguments:

\[ \mathbf{x̂_d} = \mathbf{(I - A)^{-1} (B_u u_0 + B_d d_0 + f_{op} - x_{op})}\]

Based on y0m argument and current stochastic outputs estimation $\mathbf{ŷ_s}$, composed of the measured $\mathbf{ŷ_s^m} = \mathbf{y_0^m} - \mathbf{ŷ_{d0}^m}$ and unmeasured $\mathbf{ŷ_s^u = 0}$ outputs, the stochastic estimates also start at steady-state:

\[ \mathbf{x̂_s} = \mathbf{(I - Â_s)^{-1} B̂_s ŷ_s}\]

This estimator does not augment the state vector, thus $\mathbf{x̂ = x̂_d}$. See init_internalmodel for details.

source

Correct Estimate

ModelPredictiveControl.correct_estimate!Function
correct_estimate!(estim::SteadyKalmanFilter, y0m, d0)

Correct estim.x̂0 with measured outputs y0m and disturbances d0 for current time step.

It computes the corrected state estimate $\mathbf{x̂}_{k}(k)$. See the docstring of update_estimate!(::SteadyKalmanFilter, ::Any, ::Any) for the equations.

source
correct_estimate!(estim::KalmanFilter, y0m, d0)

Correct estim.x̂0 and estim.P̂ using the time-varying KalmanFilter.

It computes the corrected state estimate $\mathbf{x̂}_{k}(k)$ estimation covariance $\mathbf{P̂}_{k}(k)$.

source
correct_estimate!(estim::UnscentedKalmanFilter, y0m, d0)

Do the same but for the UnscentedKalmanFilter.

source
correct_estimate!(estim::ExtendedKalmanFilter, y0m, d0)

Do the same but for the ExtendedKalmanFilter.

source
correct_estimate!(estim::Luenberger, y0m, d0, _ )

Identical to correct_estimate!(::SteadyKalmanFilter) but using Luenberger.

source
correct_estimate!(estim::MovingHorizonEstimator, y0m, d0)

Do the same but for MovingHorizonEstimator objects.

source
correct_estimate!(estim::InternalModel, y0m, d0)

Compute the current stochastic output estimation ŷs for InternalModel.

source

Update Estimate

Info

All these methods assume that the u0, y0m and d0 arguments are deviation vectors from their respective operating points (see setop!). The associated equations in the documentation drops the $\mathbf{0}$ in subscript to simplify the notation. Strictly speaking, the manipulated inputs, measured outputs, measured disturbances and estimated states should be denoted with $\mathbf{u_0, y_0^m, d_0}$ and $\mathbf{x̂_0}$, respectively.

ModelPredictiveControl.update_estimate!Function
update_estimate!(estim::SteadyKalmanFilter, y0m, d0, u0)

Update estim.x̂0 estimate with current inputs u0, measured outputs y0m and dist. d0.

If estim.direct == false, the SteadyKalmanFilter first corrects the state estimate with the precomputed Kalman gain $\mathbf{K̂}$. Afterward, it predicts the next state with the augmented process model. The correction step is skipped if direct == true since it is already done by the user through the preparestate! function (that calls correct_estimate!). The correction and prediction step equations are provided below.

Correction Step

\[\mathbf{x̂}_k(k) = \mathbf{x̂}_{k-1}(k) + \mathbf{K̂}[\mathbf{y^m}(k) - \mathbf{Ĉ^m x̂}_{k-1}(k) - \mathbf{D̂_d^m d}(k) ]\]

Prediction Step

\[\mathbf{x̂}_{k}(k+1) = \mathbf{Â x̂}_{k}(k) + \mathbf{B̂_u u}(k) + \mathbf{B̂_d d}(k) \]

source
update_estimate!(estim::KalmanFilter, y0m, d0, u0)

Update KalmanFilter state estim.x̂0 and estimation error covariance estim.P̂.

It implements the classical time-varying Kalman Filter based on the process model described in SteadyKalmanFilter. If estim.direct == false, it first corrects the estimate before predicting the next state. The correction step is skipped if estim.direct == true since it's already done by the user. The correction and prediction step equations are provided below, see [2] for details.

Correction Step

\[\begin{aligned} \mathbf{M̂}(k) &= \mathbf{Ĉ^m P̂}_{k-1}(k)\mathbf{Ĉ^m}' + \mathbf{R̂} \\ \mathbf{K̂}(k) &= \mathbf{P̂}_{k-1}(k)\mathbf{Ĉ^m}'\mathbf{M̂^{-1}}(k) \\ \mathbf{ŷ^m}(k) &= \mathbf{Ĉ^m x̂}_{k-1}(k) + \mathbf{D̂_d^m d}(k) \\ \mathbf{x̂}_{k}(k) &= \mathbf{x̂}_{k-1}(k) + \mathbf{K̂}(k)[\mathbf{y^m}(k) - \mathbf{ŷ^m}(k)] \\ \mathbf{P̂}_{k}(k) &= [\mathbf{I - K̂}(k)\mathbf{Ĉ^m}]\mathbf{P̂}_{k-1}(k) \end{aligned}\]

Prediction Step

\[\begin{aligned} \mathbf{x̂}_{k}(k+1) &= \mathbf{Â x̂}_{k}(k) + \mathbf{B̂_u u}(k) + \mathbf{B̂_d d}(k) \\ \mathbf{P̂}_{k}(k+1) &= \mathbf{Â P̂}_{k}(k)\mathbf{Â}' + \mathbf{Q̂} \end{aligned}\]

source
update_estimate!(estim::UnscentedKalmanFilter, y0m, d0, u0)

Update UnscentedKalmanFilter state estim.x̂0 and covariance estimate estim.P̂.

It implements the unscented Kalman Filter based on the generalized unscented transform[3]. See init_ukf for the definition of the constants $\mathbf{m̂, Ŝ}$ and $γ$. The superscript in e.g. $\mathbf{X̂}_{k-1}^j(k)$ refers the vector at the $j$th column of $\mathbf{X̂}_{k-1}(k)$. The symbol $\mathbf{0}$ is a vector with zeros. The number of sigma points is $n_σ = 2 n_\mathbf{x̂} + 1$. The matrices $\sqrt{\mathbf{P̂}_{k-1}(k)}$ and $\sqrt{\mathbf{P̂}_{k}(k)}$ are the the lower triangular factors of cholesky results. The correction and prediction step equations are provided below. The correction step is skipped if estim.direct == true since it's already done by the user.

Correction Step

\[\begin{aligned} \mathbf{X̂}_{k-1}(k) &= \bigg[\begin{matrix} \mathbf{x̂}_{k-1}(k) & \mathbf{x̂}_{k-1}(k) & \cdots & \mathbf{x̂}_{k-1}(k) \end{matrix}\bigg] + \bigg[\begin{matrix} \mathbf{0} & γ \sqrt{\mathbf{P̂}_{k-1}(k)} & -γ \sqrt{\mathbf{P̂}_{k-1}(k)} \end{matrix}\bigg] \\ \mathbf{Ŷ^m}(k) &= \bigg[\begin{matrix} \mathbf{ĥ^m}\Big( \mathbf{X̂}_{k-1}^{1}(k) \Big) & \mathbf{ĥ^m}\Big( \mathbf{X̂}_{k-1}^{2}(k) \Big) & \cdots & \mathbf{ĥ^m}\Big( \mathbf{X̂}_{k-1}^{n_σ}(k) \Big) \end{matrix}\bigg] \\ \mathbf{ŷ^m}(k) &= \mathbf{Ŷ^m}(k) \mathbf{m̂} \\ \mathbf{X̄}_{k-1}(k) &= \begin{bmatrix} \mathbf{X̂}_{k-1}^{1}(k) - \mathbf{x̂}_{k-1}(k) & \mathbf{X̂}_{k-1}^{2}(k) - \mathbf{x̂}_{k-1}(k) & \cdots & \mathbf{X̂}_{k-1}^{n_σ}(k) - \mathbf{x̂}_{k-1}(k) \end{bmatrix} \\ \mathbf{Ȳ^m}(k) &= \begin{bmatrix} \mathbf{Ŷ^m}^{1}(k) - \mathbf{ŷ^m}(k) & \mathbf{Ŷ^m}^{2}(k) - \mathbf{ŷ^m}(k) & \cdots & \mathbf{Ŷ^m}^{n_σ}(k) - \mathbf{ŷ^m}(k) \end{bmatrix} \\ \mathbf{M̂}(k) &= \mathbf{Ȳ^m}(k) \mathbf{Ŝ} \mathbf{Ȳ^m}'(k) + \mathbf{R̂} \\ \mathbf{K̂}(k) &= \mathbf{X̄}_{k-1}(k) \mathbf{Ŝ} \mathbf{Ȳ^m}'(k) \mathbf{M̂^{-1}}(k) \\ \mathbf{x̂}_k(k) &= \mathbf{x̂}_{k-1}(k) + \mathbf{K̂}(k) \big[ \mathbf{y^m}(k) - \mathbf{ŷ^m}(k) \big] \\ \mathbf{P̂}_k(k) &= \mathbf{P̂}_{k-1}(k) - \mathbf{K̂}(k) \mathbf{M̂}(k) \mathbf{K̂}'(k) \\ \end{aligned} \]

Prediction Step

\[\begin{aligned} \mathbf{X̂}_k(k) &= \bigg[\begin{matrix} \mathbf{x̂}_{k}(k) & \mathbf{x̂}_{k}(k) & \cdots & \mathbf{x̂}_{k}(k) \end{matrix}\bigg] + \bigg[\begin{matrix} \mathbf{0} & \gamma \sqrt{\mathbf{P̂}_{k}(k)} & - \gamma \sqrt{\mathbf{P̂}_{k}(k)} \end{matrix}\bigg] \\ \mathbf{X̂}_{k}(k+1) &= \bigg[\begin{matrix} \mathbf{f̂}\Big( \mathbf{X̂}_{k}^{1}(k), \mathbf{u}(k), \mathbf{d}(k) \Big) & \mathbf{f̂}\Big( \mathbf{X̂}_{k}^{2}(k), \mathbf{u}(k), \mathbf{d}(k) \Big) & \cdots & \mathbf{f̂}\Big( \mathbf{X̂}_{k}^{n_σ}(k), \mathbf{u}(k), \mathbf{d}(k) \Big) \end{matrix}\bigg] \\ \mathbf{x̂}_{k}(k+1) &= \mathbf{X̂}_{k}(k+1)\mathbf{m̂} \\ \mathbf{X̄}_k(k+1) &= \begin{bmatrix} \mathbf{X̂}_{k}^{1}(k+1) - \mathbf{x̂}_{k}(k+1) & \mathbf{X̂}_{k}^{2}(k+1) - \mathbf{x̂}_{k}(k+1) & \cdots &\, \mathbf{X̂}_{k}^{n_σ}(k+1) - \mathbf{x̂}_{k}(k+1) \end{bmatrix} \\ \mathbf{P̂}_k(k+1) &= \mathbf{X̄}_k(k+1) \mathbf{Ŝ} \mathbf{X̄}_k'(k+1) + \mathbf{Q̂} \end{aligned}\]

source
update_estimate!(estim::ExtendedKalmanFilter, y0m, d0, u0)

Update ExtendedKalmanFilter state estim.x̂0 and covariance estim.P̂.

The equations are similar to update_estimate!(::KalmanFilter) but with the substitutions $\mathbf{Ĉ^m = Ĥ^m}(k)$ and $\mathbf{Â = F̂}(k)$, the Jacobians of the augmented process model:

\[\begin{aligned} \mathbf{Ĥ}(k) &= \left. \frac{∂\mathbf{ĥ}(\mathbf{x̂}, \mathbf{d})}{∂\mathbf{x̂}} \right|_{\mathbf{x̂ = x̂}_{k-1}(k),\, \mathbf{d = d}(k)} \\ \mathbf{F̂}(k) &= \left. \frac{∂\mathbf{f̂}(\mathbf{x̂}, \mathbf{u}, \mathbf{d})}{∂\mathbf{x̂}} \right|_{\mathbf{x̂ = x̂}_{k}(k), \, \mathbf{u = u}(k),\, \mathbf{d = d}(k)} \end{aligned}\]

The matrix $\mathbf{Ĥ^m}$ is the rows of $\mathbf{Ĥ}$ that are measured outputs. The function ForwardDiff.jacobian automatically computes them. The correction and prediction step equations are provided below. The correction step is skipped if estim.direct == true since it's already done by the user.

Correction Step

\[\begin{aligned} \mathbf{Ŝ}(k) &= \mathbf{Ĥ^m}(k)\mathbf{P̂}_{k-1}(k)\mathbf{Ĥ^m}'(k) + \mathbf{R̂} \\ \mathbf{K̂}(k) &= \mathbf{P̂}_{k-1}(k)\mathbf{Ĥ^m}'(k)\mathbf{Ŝ^{-1}}(k) \\ \mathbf{ŷ^m}(k) &= \mathbf{ĥ^m}\Big( \mathbf{x̂}_{k-1}(k), \mathbf{d}(k) \Big) \\ \mathbf{x̂}_{k}(k) &= \mathbf{x̂}_{k-1}(k) + \mathbf{K̂}(k)[\mathbf{y^m}(k) - \mathbf{ŷ^m}(k)] \\ \mathbf{P̂}_{k}(k) &= [\mathbf{I - K̂}(k)\mathbf{Ĥ^m}(k)]\mathbf{P̂}_{k-1}(k) \end{aligned}\]

Prediction Step

\[\begin{aligned} \mathbf{x̂}_{k}(k+1) &= \mathbf{f̂}\Big( \mathbf{x̂}_{k}(k), \mathbf{u}(k), \mathbf{d}(k) \Big) \\ \mathbf{P̂}_{k}(k+1) &= \mathbf{F̂}(k)\mathbf{P̂}_{k}(k)\mathbf{F̂}'(k) + \mathbf{Q̂} \end{aligned}\]

source
update_estimate!(estim::Luenberger, y0m, d0, u0)

Same than update_estimate!(::SteadyKalmanFilter) but using Luenberger.

source
update_estimate!(estim::MovingHorizonEstimator, y0m, d0, u0)

Update MovingHorizonEstimator state estim.x̂0.

The optimization problem of MovingHorizonEstimator documentation is solved at each discrete time $k$. The prediction matrices are provided at init_predmat_mhe documentation. Once solved, the optimal estimate $\mathbf{x̂}_k(k+p)$ is computed by inserting the optimal values of $\mathbf{x̂}_k(k-N_k+p)$ and $\mathbf{Ŵ}$ in the augmented model from $j = N_k-1$ to $0$ inclusively. Afterward, if $N_k = H_e$, the arrival covariance for the next time step $\mathbf{P̂}_{k-N_k}(k-N_k+1)$ is estimated using estim.covestim object.

source
update_estimate!(estim::InternalModel, _ , d0, u0)

Update estim.x̂0/x̂d/x̂s with current inputs u0, measured outputs y0m and dist. d0.

The InternalModel updates the deterministic x̂d and stochastic x̂s estimates with:

\[\begin{aligned} \mathbf{x̂_d}(k+1) &= \mathbf{f}\Big( \mathbf{x̂_d}(k), \mathbf{u}(k), \mathbf{d}(k) \Big) \\ \mathbf{x̂_s}(k+1) &= \mathbf{Â_s x̂_s}(k) + \mathbf{B̂_s ŷ_s}(k) \end{aligned}\]

This estimator does not augment the state vector, thus $\mathbf{x̂ = x̂_d}$. See init_internalmodel for details.

source
  • 1Desbiens, A., D. Hodouin & É. Plamondon. 2000, "Global predictive control : a unified control structure for decoupling setpoint tracking, feedforward compensation and disturbance rejection dynamics", IEE Proceedings - Control Theory and Applications, vol. 147, no 4, https://doi.org/10.1049/ip-cta:20000443, p. 465–475, ISSN 1350-2379.
  • 2"Kalman Filter", Wikipedia: The Free Encyclopedia, https://en.wikipedia.org/wiki/Kalman_filter, Accessed 2024-08-08.
  • 3Simon, D. 2006, "Chapter 14: The unscented Kalman filter" in "Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches", John Wiley & Sons, p. 433–459, https://doi.org/10.1002/0470045345.ch14, ISBN9780470045343.