Manual: ModelingToolkit Integration

Pendulum Model

This example integrates the simple pendulum model of the last section in the ModelingToolkit.jl (MTK) framework and extracts appropriate f! and h! functions to construct a NonLinModel. An NonLinMPC is designed from this model and simulated to reproduce the results of the last section.

Disclaimer

This simple example is not an official interface to ModelingToolkit.jl. It is provided as a basic starting template to combine both packages. There is no guarantee that it will work for all corner cases.

Compat

The example relies on features and bugfixes of ModelingToolkit.jl v9.50.

We first construct and instantiate the pendulum model:

using ModelPredictiveControl, ModelingToolkit
using ModelingToolkit: D_nounits as D, t_nounits as t, varmap_to_vars
@mtkmodel Pendulum begin
    @parameters begin
        g = 9.8
        L = 0.4
        K = 1.2
        m = 0.3
    end
    @variables begin
        θ(t) # state
        ω(t) # state
        τ(t) # input
        y(t) # output
    end
    @equations begin
        D(θ)    ~ ω
        D(ω)    ~ -g/L*sin(θ) - K/m*ω + τ/m/L^2
        y       ~ θ * 180 / π
    end
end
@named mtk_model = Pendulum()
mtk_model = complete(mtk_model)

\[ \begin{align} \frac{\mathrm{d} \theta\left( t \right)}{\mathrm{d}t} &= \omega\left( t \right) \\ \frac{\mathrm{d} \omega\left( t \right)}{\mathrm{d}t} &= \frac{ - g \sin\left( \theta\left( t \right) \right)}{L} + \frac{\tau\left( t \right)}{L^{2} m} + \frac{ - K \omega\left( t \right)}{m} \\ y\left( t \right) &= 57.296 \theta\left( t \right) \end{align} \]

We than convert the MTK model to an input-output system:

function generate_f_h(model, inputs, outputs)
    (_, f_ip), dvs, psym, io_sys = ModelingToolkit.generate_control_function(
        model, inputs, split=false; outputs
    )
    if any(ModelingToolkit.is_alg_equation, equations(io_sys))
        error("Systems with algebraic equations are not supported")
    end
    nu, nx, ny = length(inputs), length(dvs), length(outputs)
    vx = string.(dvs)
    p = varmap_to_vars(defaults(io_sys), psym)
    function f!(ẋ, x, u, _ , p)
        try
            f_ip(ẋ, x, u, p, nothing)
        catch err
            if err isa MethodError
                error("NonLinModel does not support a time argument t in the f function, "*
                      "see the constructor docstring for a workaround.")
            else
                rethrow()
            end
        end
        return nothing
    end
    (_, h_ip) = ModelingToolkit.build_explicit_observed_function(
        io_sys, outputs; inputs, return_inplace = true
    )
    u_nothing = fill(nothing, nu)
    function h!(y, x, _ , p)
        try
            # MTK.jl supports a `u` argument in `h_ip` function but not this package. We set
            # `u` as a vector of nothing and `h_ip` function will presumably throw an
            # MethodError it this argument is used inside the function
            h_ip(y, x, u_nothing, p, nothing)
        catch err
            if err isa MethodError
                error("NonLinModel only support strictly proper systems (no manipulated "*
                      "input argument u in the output function h)")
            else
                rethrow()
            end
        end
        return nothing
    end
    return f!, h!, p, nu, nx, ny, vx
end
inputs, outputs = [mtk_model.τ], [mtk_model.y]
f!, h!, p, nu, nx, ny, vx = generate_f_h(mtk_model, inputs, outputs)
Ts = 0.1
vu, vy = ["\$τ\$ (Nm)"], ["\$θ\$ (°)"]

A NonLinModel can now be constructed:

model = setname!(NonLinModel(f!, h!, Ts, nu, nx, ny; p); u=vu, x=vx, y=vy)
NonLinModel with a sample time Ts = 0.1 s, RungeKutta solver and:
 1 manipulated inputs u
 2 states x
 1 outputs y
 0 measured disturbances d

We also instantiate a plant model with a 25 % larger friction coefficient $K$:

mtk_model.K = defaults(mtk_model)[mtk_model.K] * 1.25
f_plant, h_plant, p = generate_f_h(mtk_model, inputs, outputs)
plant = setname!(NonLinModel(f_plant, h_plant, Ts, nu, nx, ny; p); u=vu, x=vx, y=vy)
NonLinModel with a sample time Ts = 0.1 s, RungeKutta solver and:
 1 manipulated inputs u
 2 states x
 1 outputs y
 0 measured disturbances d

Controller Design

We can than reproduce the Kalman filter and the controller design of the last section:

α=0.01; σQ=[0.1, 1.0]; σR=[5.0]; nint_u=[1]; σQint_u=[0.1]
estim = UnscentedKalmanFilter(model; α, σQ, σR, nint_u, σQint_u)
Hp, Hc, Mwt, Nwt = 20, 2, [0.5], [2.5]
nmpc = NonLinMPC(estim; Hp, Hc, Mwt, Nwt, Cwt=Inf)
umin, umax = [-1.5], [+1.5]
nmpc = setconstraint!(nmpc; umin, umax)
NonLinMPC controller with a sample time Ts = 0.1 s, Ipopt optimizer, UnscentedKalmanFilter estimator and:
 20 prediction steps Hp
  2 control steps Hc
  0 slack variable ϵ (control constraints)
  1 manipulated inputs u (1 integrating states)
  3 estimated states x̂
  1 measured outputs ym (0 integrating states)
  0 unmeasured outputs yu
  0 measured disturbances d

The 180° setpoint response is identical:

using Plots
N = 35
res_ry = sim!(nmpc, N, [180.0], plant=plant, x_0=[0, 0], x̂_0=[0, 0, 0])
plot(res_ry)

plot1_MTK

and also the output disturbance rejection:

res_yd = sim!(nmpc, N, [180.0], plant=plant, x_0=[π, 0], x̂_0=[π, 0, 0], y_step=[10])
plot(res_yd)

plot2_MTK

Acknowledgement

Authored by 1-Bart-1 and baggepinnen, thanks for the contribution.