Functions: State Estimators

This module includes many state estimators (or state observer), both for deterministic and stochastic systems. The implementations focus on control applications, that is, relying on the estimates to compute a full state feedback (predictive controllers, in this package). They all incorporates some kind of integral action by default, since it is generally desired to eliminate the steady-state error with closed-loop control (offset-free tracking).

Warning

If you plan to use the estimators for other contexts than this specific package (e.g. : filter, parameter estimation, etc.), careful must be taken at construction since the integral action is not necessarily desired. The options nint_u=0 and nint_ym=0 disable it.

The estimators are all implemented in the current form (a.k.a. as filter form) by default to improve accuracy and robustness, that is, they all estimates at each discrete time $k$ the states of the current period $\mathbf{x̂}_k(k)$[1] (using the newest measurements, see Manual for examples). The predictor form (a.k.a. delayed form) is also available with the option direct=false. This allow moving the estimator computations after solving the MPC problem with moveinput!, for when the estimations are expensive (for instance, with the MovingHorizonEstimator).

Info

The nomenclature in this page introduces the estimated state $\mathbf{x̂}$ and output $\mathbf{ŷ}$ vectors of respectively nx̂ and ny elements. Also, all the estimators support measured $\mathbf{y^m}$ (nym elements) and unmeasured $\mathbf{y^u}$ (nyu elements) model output, where $\mathbf{y}$ refers to all of them.

StateEstimator

ModelPredictiveControl.StateEstimatorType

Abstract supertype of all state estimators.


(estim::StateEstimator)(d=[]) -> ŷ

Functor allowing callable StateEstimator object as an alias for evaloutput.

Examples

julia> kf = KalmanFilter(setop!(LinModel(tf(3, [10, 1]), 2), yop=[20]), direct=false);

julia> ŷ = kf() 
1-element Vector{Float64}:
 20.0
source

SteadyKalmanFilter

ModelPredictiveControl.SteadyKalmanFilterType
SteadyKalmanFilter(model::LinModel; <keyword arguments>)

Construct a steady-state Kalman Filter with the LinModel model.

The steady-state (or asymptotic) Kalman filter is based on the process model :

\[\begin{aligned} \mathbf{x}(k+1) &= \mathbf{Â x}(k) + \mathbf{B̂_u u}(k) + \mathbf{B̂_d d}(k) + \mathbf{w}(k) \\ \mathbf{y^m}(k) &= \mathbf{Ĉ^m x}(k) + \mathbf{D̂_d^m d}(k) + \mathbf{v}(k) \\ \mathbf{y^u}(k) &= \mathbf{Ĉ^u x}(k) + \mathbf{D̂_d^u d}(k) \end{aligned}\]

with sensor $\mathbf{v}(k)$ and process $\mathbf{w}(k)$ noises as uncorrelated zero mean white noise vectors, with a respective covariance of $\mathbf{R̂}$ and $\mathbf{Q̂}$. The arguments are in standard deviations σ, i.e. same units than outputs and states. The matrices $\mathbf{Â, B̂_u, B̂_d, Ĉ, D̂_d}$ are model matrices augmented with the stochastic model, which is specified by the numbers of integrator nint_u and nint_ym (see Extended Help). Likewise, the covariance matrices are augmented with $\mathbf{Q̂ = \text{diag}(Q, Q_{int_u}, Q_{int_{ym}})}$ and $\mathbf{R̂ = R}$. The Extended Help provide some guidelines on the covariance tuning. The matrices $\mathbf{Ĉ^m, D̂_d^m}$ are the rows of $\mathbf{Ĉ, D̂_d}$ that correspond to measured outputs $\mathbf{y^m}$ (and unmeasured ones, for $\mathbf{Ĉ^u, D̂_d^u}$). The Kalman filter will estimate the current state with the newest measurements $\mathbf{x̂}_k(k)$ if direct is true, else it will predict the state of the next time step $\mathbf{x̂}_k(k+1)$. This estimator is allocation-free.

Arguments

Info

Keyword arguments with emphasis are non-Unicode alternatives.

  • model::LinModel : (deterministic) model for the estimations.
  • i_ym=1:model.ny : model output indices that are measured $\mathbf{y^m}$, the rest are unmeasured $\mathbf{y^u}$.
  • σQ=fill(1/model.nx,model.nx) or sigmaQ : main diagonal of the process noise covariance $\mathbf{Q}$ of model, specified as a standard deviation vector.
  • σR=fill(1,length(i_ym)) or sigmaR : main diagonal of the sensor noise covariance $\mathbf{R}$ of model measured outputs, specified as a standard deviation vector.
  • nint_u=0: integrator quantity for the stochastic model of the unmeasured disturbances at the manipulated inputs (vector), use nint_u=0 for no integrator (see Extended Help).
  • nint_ym=default_nint(model,i_ym,nint_u) : same than nint_u but for the unmeasured disturbances at the measured outputs, use nint_ym=0 for no integrator (see Extended Help).
  • σQint_u=fill(1,sum(nint_u)) or sigmaQint_u : same than σQ but for the unmeasured disturbances at manipulated inputs $\mathbf{Q_{int_u}}$ (composed of integrators).
  • σQint_ym=fill(1,sum(nint_ym)) or sigmaQint_u : same than σQ for the unmeasured disturbances at measured outputs $\mathbf{Q_{int_{ym}}}$ (composed of integrators).
  • direct=true: construct with a direct transmission from $\mathbf{y^m}$ (a.k.a. current estimator, in opposition to the delayed/predictor form).

Examples

julia> model = LinModel([tf(3, [30, 1]); tf(-2, [5, 1])], 0.5);

julia> estim = SteadyKalmanFilter(model, i_ym=[2], σR=[1], σQint_ym=[0.01])
SteadyKalmanFilter estimator with a sample time Ts = 0.5 s, LinModel and:
 1 manipulated inputs u (0 integrating states)
 3 estimated states x̂
 1 measured outputs ym (1 integrating states)
 1 unmeasured outputs yu
 0 measured disturbances d

Extended Help

Extended Help

The σR argument is generally fixed at the estimated standard deviations of the sensor noises. The σQ, σQint_u and σQint_ym arguments can be used to tune the filter response. Increasing them make the filter more responsive to disturbances but more sensitive to measurement noise.

The model augmentation with nint_u vector adds integrators at model manipulated inputs, and nint_ym, at measured outputs. They create the integral action when the estimator is used in a controller as state feedback. By default, the method default_nint adds one integrator per measured output if feasible. The argument nint_ym can also be tweaked by following these rules on each measured output:

  • Use 0 integrator if the model output is already integrating (else it will be unobservable)
  • Use 1 integrator if the disturbances on the output are typically "step-like"
  • Use 2 integrators if the disturbances on the output are typically "ramp-like"

The function init_estimstoch builds the stochastic model for estimation.

Tip

Increasing σQint_u and σQint_ym values increases the integral action "gain".

The constructor pre-compute the steady-state Kalman gain with the kalman function. It can sometimes fail, for example when model matrices are ill-conditioned. In such a case, you can try the alternative time-varying KalmanFilter.

source
SteadyKalmanFilter(model, i_ym, nint_u, nint_ym, Q̂, R̂; direct=true)

Construct the estimator from the augmented covariance matrices and .

This syntax allows nonzero off-diagonal elements in $\mathbf{Q̂, R̂}$.

source

KalmanFilter

ModelPredictiveControl.KalmanFilterType
KalmanFilter(model::LinModel; <keyword arguments>)

Construct a time-varying Kalman Filter with the LinModel model.

The process model is identical to SteadyKalmanFilter. The matrix $\mathbf{P̂}$ is the estimation error covariance of model states augmented with the stochastic ones (specified by nint_u and nint_ym). Three keyword arguments specify its initial value with $\mathbf{P̂}_{-1}(0) = \mathrm{diag}\{ \mathbf{P}(0), \mathbf{P_{int_{u}}}(0), \mathbf{P_{int_{ym}}}(0) \}$. The initial state estimate $\mathbf{x̂}_{-1}(0)$ can be manually specified with setstate!, or automatically with initstate!. This estimator is allocation-free.

Arguments

Info

Keyword arguments with emphasis are non-Unicode alternatives.

  • model::LinModel : (deterministic) model for the estimations.
  • i_ym=1:model.ny : model output indices that are measured $\mathbf{y^m}$, the rest are unmeasured $\mathbf{y^u}$.
  • σP_0=fill(1/model.nx,model.nx) or sigmaP_0 : main diagonal of the initial estimate covariance $\mathbf{P}(0)$, specified as a standard deviation vector.
  • σQ=fill(1/model.nx,model.nx) or sigmaQ : main diagonal of the process noise covariance $\mathbf{Q}$ of model, specified as a standard deviation vector.
  • σR=fill(1,length(i_ym)) or sigmaR : main diagonal of the sensor noise covariance $\mathbf{R}$ of model measured outputs, specified as a standard deviation vector.
  • nint_u=0: integrator quantity for the stochastic model of the unmeasured disturbances at the manipulated inputs (vector), use nint_u=0 for no integrator.
  • nint_ym=default_nint(model,i_ym,nint_u) : same than nint_u but for the unmeasured disturbances at the measured outputs, use nint_ym=0 for no integrator.
  • σQint_u=fill(1,sum(nint_u)) or sigmaQint_u : same than σQ but for the unmeasured disturbances at manipulated inputs $\mathbf{Q_{int_u}}$ (composed of integrators).
  • σPint_u_0=fill(1,sum(nint_u)) or sigmaPint_u_0 : same than σP_0 but for the unmeasured disturbances at manipulated inputs $\mathbf{P_{int_u}}(0)$ (composed of integrators).
  • σQint_ym=fill(1,sum(nint_ym)) or sigmaQint_u : same than σQ for the unmeasured disturbances at measured outputs $\mathbf{Q_{int_{ym}}}$ (composed of integrators).
  • σPint_ym_0=fill(1,sum(nint_ym)) or sigmaPint_ym_0 : same than σP_0 but for the unmeasured disturbances at measured outputs $\mathbf{P_{int_{ym}}}(0)$ (composed of integrators).
  • direct=true: construct with a direct transmission from $\mathbf{y^m}$ (a.k.a. current estimator, in opposition to the delayed/predictor form).

Examples

julia> model = LinModel([tf(3, [30, 1]); tf(-2, [5, 1])], 0.5);

julia> estim = KalmanFilter(model, i_ym=[2], σR=[1], σP_0=[100, 100], σQint_ym=[0.01])
KalmanFilter estimator with a sample time Ts = 0.5 s, LinModel and:
 1 manipulated inputs u (0 integrating states)
 3 estimated states x̂
 1 measured outputs ym (1 integrating states)
 1 unmeasured outputs yu
 0 measured disturbances d
source
KalmanFilter(model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct=true)

Construct the estimator from the augmented covariance matrices P̂_0, and .

This syntax allows nonzero off-diagonal elements in $\mathbf{P̂}_{-1}(0), \mathbf{Q̂, R̂}$.

source

Luenberger

ModelPredictiveControl.LuenbergerType
Luenberger(
    model::LinModel; 
    i_ym = 1:model.ny, 
    nint_u  = 0,
    nint_ym = default_nint(model, i_ym),
    poles = 1e-3*(1:(model.nx + sum(nint_u) + sum(nint_ym))) .+ 0.5,
    direct = true
)

Construct a Luenberger observer with the LinModel model.

i_ym provides the model output indices that are measured $\mathbf{y^m}$, the rest are unmeasured $\mathbf{y^u}$. model matrices are augmented with the stochastic model, which is specified by the numbers of integrator nint_u and nint_ym (see SteadyKalmanFilter Extended Help). The argument poles is a vector of model.nx + sum(nint_u) + sum(nint_ym) elements specifying the observer poles/eigenvalues (near $z=0.5$ by default). The observer is constructed with a direct transmission from $\mathbf{y^m}$ if direct=true (a.k.a. current observers, in opposition to the delayed/prediction form). The method computes the observer gain with place. This estimator is allocation-free.

Examples

julia> model = LinModel([tf(3, [30, 1]); tf(-2, [5, 1])], 0.5);

julia> estim = Luenberger(model, nint_ym=[1, 1], poles=[0.61, 0.62, 0.63, 0.64])
Luenberger estimator with a sample time Ts = 0.5 s, LinModel and:
 1 manipulated inputs u (0 integrating states)
 4 estimated states x̂
 2 measured outputs ym (2 integrating states)
 0 unmeasured outputs yu
 0 measured disturbances d
source

UnscentedKalmanFilter

ModelPredictiveControl.UnscentedKalmanFilterType
UnscentedKalmanFilter(model::SimModel; <keyword arguments>)

Construct an unscented Kalman Filter with the SimModel model.

Both LinModel and NonLinModel are supported. The unscented Kalman filter is based on the process model :

\[\begin{aligned} \mathbf{x}(k+1) &= \mathbf{f̂}\Big(\mathbf{x}(k), \mathbf{u}(k), \mathbf{d}(k)\Big) + \mathbf{w}(k) \\ \mathbf{y^m}(k) &= \mathbf{ĥ^m}\Big(\mathbf{x}(k), \mathbf{d}(k)\Big) + \mathbf{v}(k) \\ \mathbf{y^u}(k) &= \mathbf{ĥ^u}\Big(\mathbf{x}(k), \mathbf{d}(k)\Big) \\ \end{aligned}\]

See SteadyKalmanFilter for details on $\mathbf{v}(k), \mathbf{w}(k)$ noises and $\mathbf{R̂}, \mathbf{Q̂}$ covariances. The two matrices are constructed from $\mathbf{Q̂ = \text{diag}(Q, Q_{int_u}, Q_{int_{ym}})}$ and $\mathbf{R̂ = R}$. The functions $\mathbf{f̂, ĥ}$ are model state-space functions augmented with the stochastic model of the unmeasured disturbances, which is specified by the numbers of integrator nint_u and nint_ym (see Extended Help). Model parameters $\mathbf{p}$ are not argument of $\mathbf{f̂, ĥ}$ functions for conciseness. The $\mathbf{ĥ^m}$ function represents the measured outputs of $\mathbf{ĥ}$ function (and unmeasured ones, for $\mathbf{ĥ^u}$). The matrix $\mathbf{P̂}$ is the estimation error covariance of model state augmented with the stochastic ones. Three keyword arguments specify its initial value with $\mathbf{P̂}_{-1}(0) = \mathrm{diag}\{ \mathbf{P}(0), \mathbf{P_{int_{u}}}(0), \mathbf{P_{int_{ym}}}(0) \}$. The initial state estimate $\mathbf{x̂}_{-1}(0)$ can be manually specified with setstate!. This estimator is allocation-free if model simulations do not allocate.

Arguments

Info

Keyword arguments with emphasis are non-Unicode alternatives.

  • model::SimModel : (deterministic) model for the estimations.
  • i_ym=1:model.ny : model output indices that are measured $\mathbf{y^m}$, the rest are unmeasured $\mathbf{y^u}$.
  • σP_0=fill(1/model.nx,model.nx) or sigmaP_0 : main diagonal of the initial estimate covariance $\mathbf{P}(0)$, specified as a standard deviation vector.
  • σQ=fill(1/model.nx,model.nx) or sigmaQ : main diagonal of the process noise covariance $\mathbf{Q}$ of model, specified as a standard deviation vector.
  • σR=fill(1,length(i_ym)) or sigmaR : main diagonal of the sensor noise covariance $\mathbf{R}$ of model measured outputs, specified as a standard deviation vector.
  • nint_u=0: integrator quantity for the stochastic model of the unmeasured disturbances at the manipulated inputs (vector), use nint_u=0 for no integrator (see Extended Help).
  • nint_ym=default_nint(model,i_ym,nint_u) : same than nint_u but for the unmeasured disturbances at the measured outputs, use nint_ym=0 for no integrator (see Extended Help).
  • σQint_u=fill(1,sum(nint_u)) or sigmaQint_u : same than σQ but for the unmeasured disturbances at manipulated inputs $\mathbf{Q_{int_u}}$ (composed of integrators).
  • σPint_u_0=fill(1,sum(nint_u)) or sigmaPint_u_0 : same than σP_0 but for the unmeasured disturbances at manipulated inputs $\mathbf{P_{int_u}}(0)$ (composed of integrators).
  • σQint_ym=fill(1,sum(nint_ym)) or sigmaQint_u : same than σQ for the unmeasured disturbances at measured outputs $\mathbf{Q_{int_{ym}}}$ (composed of integrators).
  • σPint_ym_0=fill(1,sum(nint_ym)) or sigmaPint_ym_0 : same than σP_0 but for the unmeasured disturbances at measured outputs $\mathbf{P_{int_{ym}}}(0)$ (composed of integrators).
  • direct=true: construct with a direct transmission from $\mathbf{y^m}$ (a.k.a. current estimator, in opposition to the delayed/predictor form).
  • α=1e-3 or alpha : alpha parameter, spread of the state distribution $(0 < α ≤ 1)$.
  • β=2 or beta : beta parameter, skewness and kurtosis of the states distribution $(β ≥ 0)$.
  • κ=0 or kappa : kappa parameter, another spread parameter $(0 ≤ κ ≤ 3)$.

Examples

julia> model = NonLinModel((x,u,_,_)->0.1x+u, (x,_,_)->2x, 10.0, 1, 1, 1, solver=nothing);

julia> estim = UnscentedKalmanFilter(model, σR=[1], nint_ym=[2], σPint_ym_0=[1, 1])
UnscentedKalmanFilter estimator with a sample time Ts = 10.0 s, NonLinModel and:
 1 manipulated inputs u (0 integrating states)
 3 estimated states x̂
 1 measured outputs ym (2 integrating states)
 0 unmeasured outputs yu
 0 measured disturbances d

Extended Help

Extended Help

The Extended Help of SteadyKalmanFilter details the tuning of the covariances and the augmentation with nint_ym and nint_u arguments. The default augmentation scheme is identical, that is nint_u=0 and nint_ym computed by default_nint. Note that the constructor does not validate the observability of the resulting augmented NonLinModel. In such cases, it is the user's responsibility to ensure that it is still observable.

source
UnscentedKalmanFilter(
    model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂, α=1e-3, β=2, κ=0; direct=true
)

Construct the estimator from the augmented covariance matrices P̂_0, and .

This syntax allows nonzero off-diagonal elements in $\mathbf{P̂}_{-1}(0), \mathbf{Q̂, R̂}$.

source

ExtendedKalmanFilter

ModelPredictiveControl.ExtendedKalmanFilterType
ExtendedKalmanFilter(model::SimModel; <keyword arguments>)

Construct an extended Kalman Filter with the SimModel model.

Both LinModel and NonLinModel are supported. The process model and the keyword arguments are identical to UnscentedKalmanFilter, except for α, β and κ which do not apply to the extended Kalman Filter. The Jacobians of the augmented model $\mathbf{f̂, ĥ}$ are computed with ForwardDiff.jl automatic differentiation. This estimator allocates memory for the Jacobians.

Warning

See the Extended Help of linearize function if you get an error like: MethodError: no method matching (::var"##")(::Vector{ForwardDiff.Dual}).

Examples

julia> model = NonLinModel((x,u,_,_)->0.2x+u, (x,_,_)->-3x, 5.0, 1, 1, 1, solver=nothing);

julia> estim = ExtendedKalmanFilter(model, σQ=[2], σQint_ym=[2], σP_0=[0.1], σPint_ym_0=[0.1])
ExtendedKalmanFilter estimator with a sample time Ts = 5.0 s, NonLinModel and:
 1 manipulated inputs u (0 integrating states)
 2 estimated states x̂
 1 measured outputs ym (1 integrating states)
 0 unmeasured outputs yu
 0 measured disturbances d
source
ExtendedKalmanFilter(model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct=true)

Construct the estimator from the augmented covariance matrices P̂_0, and .

This syntax allows nonzero off-diagonal elements in $\mathbf{P̂}_{-1}(0), \mathbf{Q̂, R̂}$.

source

MovingHorizonEstimator

ModelPredictiveControl.MovingHorizonEstimatorType
MovingHorizonEstimator(model::SimModel; <keyword arguments>)

Construct a moving horizon estimator (MHE) based on model (LinModel or NonLinModel).

It can handle constraints on the estimates, see setconstraint!. Additionally, model is not linearized like the ExtendedKalmanFilter, and the probability distribution is not approximated like the UnscentedKalmanFilter. The computational costs are drastically higher, however, since it minimizes the following objective function at each discrete time $k$:

\[\min_{\mathbf{x̂}_k(k-N_k+p), \mathbf{Ŵ}, ϵ} \mathbf{x̄}' \mathbf{P̄}^{-1} \mathbf{x̄} + \mathbf{Ŵ}' \mathbf{Q̂}_{N_k}^{-1} \mathbf{Ŵ} + \mathbf{V̂}' \mathbf{R̂}_{N_k}^{-1} \mathbf{V̂} + C ϵ^2\]

in which the arrival costs are evaluated from the states estimated at time $k-N_k$:

\[\begin{aligned} \mathbf{x̄} &= \mathbf{x̂}_{k-N_k}(k-N_k+p) - \mathbf{x̂}_k(k-N_k+p) \\ \mathbf{P̄} &= \mathbf{P̂}_{k-N_k}(k-N_k+p) \end{aligned}\]

and the covariances are repeated $N_k$ times:

\[\begin{aligned} \mathbf{Q̂}_{N_k} &= \text{diag}\mathbf{(Q̂,Q̂,...,Q̂)} \\ \mathbf{R̂}_{N_k} &= \text{diag}\mathbf{(R̂,R̂,...,R̂)} \end{aligned}\]

The estimation horizon $H_e$ limits the window length:

\[N_k = \begin{cases} k + 1 & k < H_e \\ H_e & k ≥ H_e \end{cases}\]

The vectors $\mathbf{Ŵ}$ and $\mathbf{V̂}$ respectively encompass the estimated process noises $\mathbf{ŵ}(k-j+p)$ from $j=N_k$ to $1$ and sensor noises $\mathbf{v̂}(k-j+1)$ from $j=N_k$ to $1$. The Extended Help defines the two vectors, the slack variable $ϵ$, and the estimation of the covariance at arrival $\mathbf{P̂}_{k-N_k}(k-N_k+p)$. If the keyword argument direct=true (default value), the constant $p=0$ in the equations above, and the MHE is in the current form. Else $p=1$, leading to the prediction form.

See UnscentedKalmanFilter for details on the augmented process model and $\mathbf{R̂}, \mathbf{Q̂}$ covariances. This estimator allocates a fair amount of memory at each time step.

Warning

See the Extended Help if you get an error like: MethodError: no method matching (::var"##")(::Vector{ForwardDiff.Dual}).

Arguments

Info

Keyword arguments with emphasis are non-Unicode alternatives.

  • model::SimModel : (deterministic) model for the estimations.
  • He=nothing : estimation horizon $H_e$, must be specified.
  • i_ym=1:model.ny : model output indices that are measured $\mathbf{y^m}$, the rest are unmeasured $\mathbf{y^u}$.
  • σP_0=fill(1/model.nx,model.nx) or sigmaP_0 : main diagonal of the initial estimate covariance $\mathbf{P}(0)$, specified as a standard deviation vector.
  • σQ=fill(1/model.nx,model.nx) or sigmaQ : main diagonal of the process noise covariance $\mathbf{Q}$ of model, specified as a standard deviation vector.
  • σR=fill(1,length(i_ym)) or sigmaR : main diagonal of the sensor noise covariance $\mathbf{R}$ of model measured outputs, specified as a standard deviation vector.
  • nint_u=0: integrator quantity for the stochastic model of the unmeasured disturbances at the manipulated inputs (vector), use nint_u=0 for no integrator (see Extended Help).
  • nint_ym=default_nint(model,i_ym,nint_u) : same than nint_u but for the unmeasured disturbances at the measured outputs, use nint_ym=0 for no integrator (see Extended Help).
  • σQint_u=fill(1,sum(nint_u)) or sigmaQint_u : same than σQ but for the unmeasured disturbances at manipulated inputs $\mathbf{Q_{int_u}}$ (composed of integrators).
  • σPint_u_0=fill(1,sum(nint_u)) or sigmaPint_u_0 : same than σP_0 but for the unmeasured disturbances at manipulated inputs $\mathbf{P_{int_u}}(0)$ (composed of integrators).
  • σQint_ym=fill(1,sum(nint_ym)) or sigmaQint_u : same than σQ for the unmeasured disturbances at measured outputs $\mathbf{Q_{int_{ym}}}$ (composed of integrators).
  • σPint_ym_0=fill(1,sum(nint_ym)) or sigmaPint_ym_0 : same than σP_0 but for the unmeasured disturbances at measured outputs $\mathbf{P_{int_{ym}}}(0)$ (composed of integrators).
  • Cwt=Inf : slack variable weight $C$, default to Inf meaning hard constraints only.
  • optim=default_optim_mhe(model) : a JuMP.Model with a quadratic/nonlinear optimizer for solving (default to Ipopt, or OSQP if model is a LinModel).
  • direct=true: construct with a direct transmission from $\mathbf{y^m}$ (a.k.a. current estimator, in opposition to the delayed/predictor form).

Examples

julia> model = NonLinModel((x,u,_,_)->0.1x+u, (x,_,_)->2x, 10.0, 1, 1, 1, solver=nothing);

julia> estim = MovingHorizonEstimator(model, He=5, σR=[1], σP_0=[0.01])
MovingHorizonEstimator estimator with a sample time Ts = 10.0 s, Ipopt optimizer, NonLinModel and:
 5 estimation steps He
 0 slack variable ϵ (estimation constraints)
 1 manipulated inputs u (0 integrating states)
 2 estimated states x̂
 1 measured outputs ym (1 integrating states)
 0 unmeasured outputs yu
 0 measured disturbances d

Extended Help

Extended Help

The estimated process and sensor noises are defined as:

\[\mathbf{Ŵ} = \begin{bmatrix} \mathbf{ŵ}(k-N_k+p+0) \\ \mathbf{ŵ}(k-N_k+p+1) \\ \vdots \\ \mathbf{ŵ}(k+p-1) \end{bmatrix} , \quad \mathbf{V̂} = \begin{bmatrix} \mathbf{v̂}(k-N_k+1) \\ \mathbf{v̂}(k-N_k+2) \\ \vdots \\ \mathbf{v̂}(k) \end{bmatrix}\]

based on the augmented model functions $\mathbf{f̂, ĥ^m}$:

\[\begin{aligned} \mathbf{v̂}(k-j) &= \mathbf{y^m}(k-j) - \mathbf{ĥ^m}\Big(\mathbf{x̂}_k(k-j), \mathbf{d}(k-j)\Big) \\ \mathbf{x̂}_k(k-j+1) &= \mathbf{f̂}\Big(\mathbf{x̂}_k(k-j), \mathbf{u}(k-j), \mathbf{d}(k-j)\Big) + \mathbf{ŵ}(k-j) \end{aligned}\]

The constant $p$ equals to !direct. In other words, $\mathbf{Ŵ}$ and $\mathbf{V̂}$ are shifted by one time step if direct==true. The non-default prediction form with $p=1$ is particularly useful for the MHE since it moves its expensive computations after the MPC optimization. That is, preparestate! will solve the optimization by default, but it can be postponed to updatestate! with direct=false.

The Extended Help of SteadyKalmanFilter details the tuning of the covariances and the augmentation with nint_ym and nint_u arguments. The default augmentation scheme is identical, that is nint_u=0 and nint_ym computed by default_nint. Note that the constructor does not validate the observability of the resulting augmented NonLinModel. In such cases, it is the user's responsibility to ensure that it is still observable.

The estimation covariance at arrival $\mathbf{P̂}_{k-N_k}(k-N_k+p)$ gives an uncertainty on the state estimate at the beginning of the window $k-N_k+p$, that is, in the past. It is not the same as the current estimate covariance $\mathbf{P̂}_k(k)$, a value not computed by the MHE (contrarily to e.g. the KalmanFilter). Three keyword arguments specify its initial value with $\mathbf{P̂_i} = \mathrm{diag}\{ \mathbf{P}(0), \mathbf{P_{int_{u}}}(0), \mathbf{P_{int_{ym}}}(0) \}$. The initial state estimate $\mathbf{x̂_i}$ can be manually specified with setstate!, or automatically with initstate! for LinModel. Note the MHE with $p=0$ is slightly inconsistent with all the other estimators here. It interprets the initial values as $\mathbf{x̂_i} = \mathbf{x̂}_{-1}(-1)$ and $\mathbf{P̂_i} = \mathbf{P̂}_{-1}(-1)$, an a posteriori estimate[2] from the last time step. The MHE with $p=1$ is consistent, interpreting them as $\mathbf{x̂_i} = \mathbf{x̂}_{-1}(0)$ and $\mathbf{P̂_i} = \mathbf{P̂}_{-1}(0)$.

The optimization and the update of the arrival covariance depend on model:

  • If model is a LinModel, the optimization is treated as a quadratic program with a time-varying Hessian, which is generally cheaper than nonlinear programming. By default, a KalmanFilter estimates the arrival covariance (customizable).
  • Else, a nonlinear program with automatic differentiation (AD) solves the optimization. Optimizers generally benefit from exact derivatives like AD. However, the f and h functions must be compatible with this feature. See Automatic differentiation for common mistakes when writing these functions. An UnscentedKalmanFilter estimates the arrival covariance by default.

The slack variable $ϵ$ relaxes the constraints if enabled, see setconstraint!. It is disabled by default for the MHE (from Cwt=Inf) but it should be activated for problems with two or more types of bounds, to ensure feasibility (e.g. on the estimated state $\mathbf{x̂}$ and sensor noise $\mathbf{v̂}$). Note that if Cwt≠Inf, the attribute nlp_scaling_max_gradient of Ipopt is set to 10/Cwt (if not already set), to scale the small values of $ϵ$. Use the second constructor to specify the arrival covariance estimation method.

source
MovingHorizonEstimator(
    model, He, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂, Cwt=Inf;
    optim=default_optim_mhe(model), 
    direct=true,
    covestim=default_covestim_mhe(model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct)
)

Construct the estimator from the augmented covariance matrices P̂_0, and .

This syntax allows nonzero off-diagonal elements in $\mathbf{P̂_i}, \mathbf{Q̂, R̂}$, where $\mathbf{P̂_i}$ is the initial estimation covariance, provided by P̂_0 argument. The keyword argument covestim also allows specifying a custom StateEstimator object for the estimation of covariance at the arrival $\mathbf{P̂}_{k-N_k}(k-N_k+p)$. The supported types are KalmanFilter, UnscentedKalmanFilter and ExtendedKalmanFilter.

source

InternalModel

ModelPredictiveControl.InternalModelType
InternalModel(model::SimModel; i_ym=1:model.ny, stoch_ym=ss(I,I,I,I,model.Ts))

Construct an internal model estimator based on model (LinModel or NonLinModel).

i_ym provides the model output indices that are measured $\mathbf{y^m}$, the rest are unmeasured $\mathbf{y^u}$. model evaluates the deterministic predictions $\mathbf{ŷ_d}$, and stoch_ym, the stochastic predictions of the measured outputs $\mathbf{ŷ_s^m}$ (the unmeasured ones being $\mathbf{ŷ_s^u=0}$). The predicted outputs sum both values : $\mathbf{ŷ = ŷ_d + ŷ_s}$. See the Extended Help for more details. This estimator is allocation-free is model simulations do not allocate.

Warning

InternalModel estimator does not work if model is integrating or unstable. The constructor verifies these aspects for LinModel but not for NonLinModel. Uses any other state estimator in such cases.

Examples

julia> estim = InternalModel(LinModel([tf(3, [30, 1]); tf(-2, [5, 1])], 0.5), i_ym=[2])
InternalModel estimator with a sample time Ts = 0.5 s, LinModel and:
 1 manipulated inputs u
 2 estimated states x̂
 1 measured outputs ym
 1 unmeasured outputs yu
 0 measured disturbances d

Extended Help

Extended Help

stoch_ym is a TransferFunction or StateSpace object that models disturbances on $\mathbf{y^m}$. Its input is a hypothetical zero mean white noise vector. stoch_ym supposes 1 integrator per measured outputs by default, assuming that the current stochastic estimate $\mathbf{ŷ_s^m}(k) = \mathbf{y^m}(k) - \mathbf{ŷ_d^m}(k)$ is constant in the future. This is the dynamic matrix control (DMC) strategy, which is simple but sometimes too aggressive. Additional poles and zeros in stoch_ym can mitigate this. The following block diagram summarizes the internal model structure.

block diagram of the internal model structure

source

Default Model Augmentation

ModelPredictiveControl.default_nintFunction
default_nint(model::LinModel, i_ym=1:model.ny, nint_u=0) -> nint_ym

Get default integrator quantity per measured outputs nint_ym for LinModel.

The arguments i_ym and nint_u are the measured output indices and the integrator quantity on each manipulated input, respectively. By default, one integrator is added on each measured outputs. If $\mathbf{Â, Ĉ}$ matrices of the augmented model become unobservable, the integrator is removed. This approach works well for stable, integrating and unstable model (see Examples).

Examples

julia> model = LinModel(append(tf(3, [10, 1]), tf(2, [1, 0]), tf(4,[-5, 1])), 1.0);

julia> nint_ym = default_nint(model)
3-element Vector{Int64}:
 1
 0
 1
source
default_nint(model::SimModel, i_ym=1:model.ny, nint_u=0)

One integrator on each measured output by default if model is not a LinModel.

Theres is no verification the augmented model remains observable. If the integrator quantity per manipulated input nint_u ≠ 0, the method returns zero integrator on each measured output.

source
  • 1also denoted $\mathbf{x̂}_{k|k}$ elsewhere.
  • 2M. Hovd (2012), "A Note On The Smoothing Formulation Of Moving Horizon Estimation", Facta Universitatis, Vol. 11 №2.